Pure Mathematics P3 Mark scheme

Quest	on Scheme	Marks
1	$9x^2 - 4 = (3x - 2)(3x + 2)$ at any stage	B1
	Eliminating the common factor of $(3x + 2)$ at any stage	
	$\frac{2(3x+2)}{(3x-2)(3x+2)} = \frac{2}{3x-2}$	M1
	$\overline{(3x-2)(3x+2)}^{-}\overline{3x-2}$	
	Use of a common denominator	
	$\frac{2(3x+2)(3x+1)}{(9x^2-4)(3x+1)} - \frac{2(9x^2-4)}{(9x^2-4)(3x+1)} \text{ or } \frac{2(3x+1)}{(3x-2)(3x+1)} - \frac{2(3x-2)}{(3x+1)(3x-2)}$	M1
	$\frac{6}{(3x-2)(3x+1)} \text{ or } \frac{6}{9x^2 - 3x - 2}$	A1
		(4)
		(4 marks)
Notes:		
	Accept two separate fractions with the same denominator as shown in the mark so Amongst possible (incorrect) options scoring method marks are $\frac{2(3x+2)}{(9x^2-4)(3x+1)} - \frac{2(9x^2-4)}{(9x^2-4)(3x+1)}$. Only one numerator adapted, separate fraction $\frac{2 \times 3x + 1 - 2 \times 3x - 2}{(3x-2)(3x+1)}$ Invisible brackets, single fraction.	
A1:	$\frac{6}{(3x-2)(3x+1)}$ This is not a given answer so you can allow recovery from 'invisible' brackets.	
Altern $\frac{2(3x+1)}{(9x^2-1)}$	tive $\frac{2}{4} - \frac{2}{(3x+1)} = \frac{2(3x+2)(3x+1) - 2(9x^2 - 4)}{(9x^2 - 4)(3x+1)} = \frac{18x+12}{(9x^2 - 4)(3x+1)}$ has scored 0,0,1,0) so far
(~~	$= \frac{6(3x+2)}{(3x+2)(3x-2)(3x+1)}$ is now 1,1,1,0 $= \frac{6}{(3x-2)(3x+1)}$ and now 1,1,1,1	

Question	Scheme	Marks
2(a)	$x^{3} + 3x^{2} + 4x - 12 = 0 \implies x^{3} + 3x^{2} = 12 - 4x$	
	$\Rightarrow x^2 (x+3) = 12 - 4x$	M1
	$\rightarrow x^2$ 12-4x	dM1
	$\Rightarrow x^2 = \frac{12 - 4x}{(x+3)}$	
	$\Rightarrow x = \sqrt{\frac{4(3-x)}{(x+3)}}$	A1*
	$\sqrt{(x+3)}$	(3)
(b)		(3) M1 A1
(b)	$x_1 = \sqrt{\left(\frac{4(3-1)}{(3+1)}\right)} = 1.41$	
	awrt $x_2 = 1.20$ $x_3 = 1.31$	A1
		(3)
(c)	Attempts $f(1.2725) = (+)0.00827$ $f(1.2715) = -0.00821$	M1
	Values correct with reason (change of sign with $f(x)$ continuous) and conclusion ($\Rightarrow \alpha = 1.272$)	A1
		(2)
by	oves from $f(x) = 0$, which may be implied by subsequent working, to $x^2(x \pm 3)^2$ separating terms and factorising in either order. No need to factorise rhs for t	his mark.
(a) M1: M by dM1: Di be A1*: CS nu (b)	r separating terms and factorising in either order. No need to factorise rhs for t ivides by ' $(x+3)$ ' term to make x^2 the subject, then takes square root. No need factorised at this stage. SO. This is a given solution. Do not allow sloppy algebra or notation with root imerator for instance. The 12–4x needs to have been factorised.	$) = \pm 12 \pm 4x$ his mark. for rhs to on just
(a) M1: M by dM1: Di be A1*: CS nu (b) M1: An	y separating terms and factorising in either order. No need to factorise rhs for t ivides by ' $(x+3)$ ' term to make x^2 the subject, then takes square root. No need a factorised at this stage. SO. This is a given solution. Do not allow sloppy algebra or notation with root	$) = \pm 12 \pm 4x$ his mark. for rhs to on just
(a) M1: M by dM1: Di be A1*: CS nu (b) M1: An the	y separating terms and factorising in either order. No need to factorise rhs for the ivides by ' $(x+3)$ ' term to make x^2 the subject, then takes square root. No need to factorised at this stage. SO. This is a given solution. Do not allow sloppy algebra or notation with root imerator for instance. The 12–4x needs to have been factorised.	$) = \pm 12 \pm 4x$ his mark. for rhs to on just be awarded for
(a) M1: M by dM1: Di be A1*: CS nu (b) M1: An the A1: x ₁	y separating terms and factorising in either order. No need to factorise rhs for the invides by '(x+3)' term to make x^2 the subject, then takes square root. No need a factorised at this stage. 60. This is a given solution. Do not allow sloppy algebra or notation with root interator for instance. The 12–4x needs to have been factorised. In attempt to substitute $x_0 = 1$ into the iterative formula to calculate x_1 . This can be sight of $\sqrt{\frac{4(3-1)}{(3+1)}}$, $\sqrt{\frac{8}{4}}$, $\sqrt{2}$ and even 1.4	$) = \pm 12 \pm 4x$ his mark. for rhs to on just be awarded for 0
(a) M1: M by dM1: Di be A1*: CS nu (b) M1: An the A1: x ₁ A1: x ₂	The separating terms and factorising in either order. No need to factorise rhs for the factorised by '(x+3)' term to make x^2 the subject, then takes square root. No need to factorised at this stage. SO. This is a given solution. Do not allow sloppy algebra or notation with root imerator for instance. The 12–4x needs to have been factorised. In attempt to substitute $x_0 = 1$ into the iterative formula to calculate x_1 . This can be explicitly and be explicitly $\sqrt{\frac{4(3-1)}{(3+1)}}$, $\sqrt{\frac{8}{4}}$, $\sqrt{2}$ and even 1.4 $= 1.41$. The subscript is not important. Mark as the first value found, $\sqrt{2}$ is A	$) = \pm 12 \pm 4x$ his mark. for rhs to on just be awarded for 0
(a) M1: M by dM1: Di be A1*: CS nu (b) M1: An the A1: x ₁ A1: x ₂ for (c) M1: Ca roi f(1)	The separating terms and factorising in either order. No need to factorise rhs for the factorised by '(x+3)' term to make x^2 the subject, then takes square root. No need a factorised at this stage. SO. This is a given solution. Do not allow sloppy algebra or notation with root interactor for instance. The 12–4x needs to have been factorised. In attempt to substitute $x_0 = 1$ into the iterative formula to calculate x_1 . This can be explicitly and the iterative formula to calculate x_1 . This can be explicitly and $\sqrt{\frac{4(3-1)}{(3+1)}}$, $\sqrt{\frac{8}{4}}$, $\sqrt{2}$ and even 1.4 $= 1.41$. The subscript is not important. Mark as the first value found, $\sqrt{2}$ is A $x_1 = awrt 1.20$ $x_3 = awrt 1.31$. Mark as the second and third values found. Conditional conditions are specified.	$) = \pm 12 \pm 4x$ his mark. for rhs to on just be awarded for 0 done 1.2 to 1 sig fig
(a) M1: M by dM1: Di be A1*: CS nu (b) M1: An the A1: x ₁ A1: x ₂ for (c) M1: Ca roo f(1) f(1) A1: Be	A separating terms and factorising in either order. No need to factorise rhs for the ivides by '(x+3)' term to make x^2 the subject, then takes square root. No need a factorised at this stage. 30. This is a given solution. Do not allow sloppy algebra or notation with root interator for instance. The 12–4x needs to have been factorised. An attempt to substitute $x_0 = 1$ into the iterative formula to calculate x_1 . This can be explicitly and the important of $\sqrt{\frac{4(3-1)}{(3+1)}}$, $\sqrt{\frac{8}{4}}$, $\sqrt{2}$ and even 1.4 = 1.41. The subscript is not important. Mark as the first value found, $\sqrt{2}$ is A $x_1 = awrt 1.20$ $x_3 = awrt 1.31$. Mark as the second and third values found. Condition x_2 and the truncated. Accept f(1.2715) = -0.008 1sf rounded or truncated. Also 1.2715) = -0.01 2dp. Accept f(1.2725) = (+) 0.008 1sf rounded or truncated. Accept f(1.2725) = (+) 0.008 1sf rounded or truncated. Accept f(1.2725) = (+) 0.008 1sf rounded or truncated. Accept f(1.2725) = (+) 0.008 1sf rounded or truncated.	$) = \pm 12 \pm 4x$ his mark. for rhs to on just be awarded for 0 done 1.2 to 1 sig fig to accept

PMT

Questi	on Scheme	Marks
3 (a)	Uses $-2(3-x) + 5 = \frac{1}{2}x + 30$	M1
	Attempts to solve by multiplying out bracket, collect terms etc.	M1
	$\frac{3}{2}x = 31$	
	$x = \frac{62}{3}$ only	A1
		(3)
(b)	Makes the connection that there must be two intersections.	M1
	Implied by either end point $k > 5$ or $k \leq 11$	
	$5 < k \leq 11$	A1
		(2)
		(5 marks)
Notes:		
(a)		
M1:	Deduces that the solution to $f(x) = \frac{1}{2}x + 30$ can be found by solving	
	$-2(3-x) + 5 = \frac{1}{2}x + 30$	
M1:	Correct method used to solve their equation. Multiplies out bracket/ collects like terms.	
A1:	$x = \frac{62}{3}$ only. Do not allow 20.6	
(b)		
	Deduces that two distinct roots occurs when $y = k$ intersects $y = f(x)$ in two p may be implied by the sight of either end point. Score for sight of either $k > 5$	
	Correct solution only $\{k : k \in \mathbb{R}, 5 < k \leq 11\}$	

Questi	on Scheme	Marks
4(i)	$\int \frac{1}{(2x-1)} dx = \frac{1}{2} \ln(2x-1)$	M1 A1
	$\int_{5}^{13} \frac{1}{(2x-1)} dx = \frac{1}{2} \ln 25 - \frac{1}{2} \ln 9 = \frac{1}{2} \ln \left(\frac{25}{9}\right)$	dM1
	$=\ln\left(\frac{5}{3}\right)$	A1
		(4)
(ii)	Integrates to give $\alpha \cos 2x + \beta \sec \frac{1}{3}x\{+c\}$ where $\alpha \neq 0, \beta \neq 0$	M1
	$\left[-\frac{1}{2}\cos 2x + 3\sec \frac{1}{3}x\{+c\}\right]$	
	$\left(-\frac{1}{2}\cos\left(2\times\frac{\pi}{2}\right)+3\sec\left(\frac{1}{3}\times\frac{\pi}{2}\right)\right)-\left(-\frac{1}{2}\cos(0)+3\sec(0)\right)$ Substitutes limits of 0 and $\frac{\pi}{2}$ and subtracts the correct way around	dM1
	$=2\sqrt{3}-2$	A1
		(3)
		7 marks)
Notes:		
(i)		
M1:	For $\int \frac{1}{(2x-1)} dx = k \ln(2x-1)$ where k is a constant.	
A1:	Correct integration $\int \frac{1}{(2x-1)} dx = \frac{1}{2} \ln(2x-1)$	
dM1:	Scored for substituting in the limits, subtracting and using correctly at least one log	law.
	You may see the subtraction law $k \ln 25 - k \ln 9 = k \ln \left(\frac{25}{9}\right)$ or the index law	
	$\frac{1}{2}\ln 25 - \frac{1}{2}\ln 9 = \ln 5 - \ln 3$	
A1:	cao $\ln\left(\frac{5}{3}\right)$	
(ii)		
M1:	Integrates to a form $\alpha \cos 2x + \beta \sec \frac{1}{3}x\{+c\}$ where $\alpha \neq 0, \beta \neq 0$	
dM1:	Dependent upon the previous M1. It is scored for substituting limits of 0 and $\frac{\pi}{2}$ and subtracting the correct way around.	
A1:	cao $2\sqrt{3}-2$	

PMT

QuestionSchemeMarks5
$$y = \frac{5x^2 - 10x + 9}{(x-1)^2}$$
IDifferentiates numerator to $10x - 10$ and denominator to $2(x-1)$ o.e.B1Uses the quotient ruleMI A1 $\frac{dy}{dx} = \frac{(x-1)^2(10x-10) - (5x^2 - 10x + 9)2(x-1)}{(x-1)^4}$ MI A1 $\frac{dy}{dx} = \frac{(x-1)^2(10x-10) - (5x^2 - 10x + 9)2(x-1)}{(x-1)^4}$ MITakes out a common factor from the numerator and cancelsM1 $\frac{dy}{dx} = \frac{(x-1)^2(10x-10) - (5x^2 - 10x + 9)2)}{(x-1)^{42}}$ M1Simplifies the numerator by multiplying and collecting termsM1 $\frac{dy}{dx} = \frac{(10x^2 - 20x + 10 - 10x^2 + 20x - 18)}{(x-1)^3}$ A1 $\frac{dy}{dx} = \frac{-8}{(x-1)^3}$ 60(6 marks)Notes:B1: See scheme.M1: Uses the quotient rule to reach a form $\frac{dy}{dx} = \frac{(x-1)^2(4x+B) - (5x^2 - 10x + 9)(Cx+D)}{(x-1)^4}$ o.e.Alternatively uses the product rule to reach a for $\frac{dy}{dx} = (x-1)^2(10x-10) - (5x^2 - 10x + 9)C(x-1)^{-3}$ o.e.Alternatively uses the product rule is used $\frac{dy}{dx} = (x-1)^2(10x-10) - (5x^2 - 10x + 9)C(x-1)^{-3}$ A1: Fully correct $\frac{dy}{dx}$ If the product rule is used $\frac{dy}{dx} = (x-1)^{-2}(10x-10) - (5x^2 - 10x + 9)2(x-1)^{-1}$ M1: This is for using a correct method to reach a form $\frac{dy}{dx} = \frac{g(x)}{(x-1)^3}$. See scheme when using the quotient rule. If the product rule is used it is for combining the terms using a common denominator.M1: Scored for simplifying the numerator (By multiplying out and collecting terms).A1: $\frac{dy}{dx} = \frac{-8}{$

127

Questio	on Scheme	Marks	
6(a)	f(x) > 2	B1	
		(1)	
(b)	$fg(x) = e^{\ln x} + 2, = x + 2$	M1 A1	
		(2)	
(c)	$e^{2x+3}+2=6 \Longrightarrow e^{2x+3}=4$	M1 A1	
	$\Rightarrow 2x + 3 = \ln 4$		
	$\Rightarrow x = \frac{\ln 4 - 3}{2} \text{or} \ln 2 - \frac{3}{2}$	M1 A1	
		(4)	
(d)	Let $y = e^x + 2 \Longrightarrow y - 2 = e^x \Longrightarrow \ln(y - 2) = x$	M1	
	$f^{-1}(x) = \ln(x-2), x > 2$	A1 B1ft	
		(3)	
(e)	y = f(x) Shape for $f(x)$	B1	
	(0,3) $y=f^{1}(x)$ (0,3)	B1	
	$0 \qquad (3,0) \qquad x \qquad \text{Shape for } f^{-1}(x)$	B1	
	(3, 0)	B1	
		(4)	
	(14	4 marks	
Notes:			
	Range of $f(x)>2$. Accept $y>2$, $(2,\infty)$, $f>2$, as well as 'range is the set of numbers bigg than 2' but don't accept $x > 2$	er	
(b)			
	For applying the correct order of operations. Look for $e^{\ln x} + 2$. Note that $\ln e^x + 2$ is M0		
A1:	Simplifies $e^{\ln x} + 2$ to $x + 2$. Just the answer is acceptable for both marks.		
	Starts with $e^{2x+3} + 2 = 6$ and proceeds to $e^{2x+3} =$ $e^{2x+3} = 4$		
M1:	Takes ln's both sides, $2x + 3 = \ln \dots$ and proceeds to $x = \dots$		

Question 6 notes <i>continued</i>	Question	6 notes	continued	
--	----------	---------	-----------	--

-	
A1:	$x = \frac{\ln 4 - 3}{2}$ oe. eg $\ln 2 - \frac{3}{2}$ Remember to isw any incorrect working after a correct
	answer.
(d)	
M1:	Starts with $y = e^x + 2$ or $x = e^y + 2$ and attempts to change the subject. All ln work must be
	correct. The 2 must be dealt with first. Eg. $y = e^x + 2 \Longrightarrow \ln y = x + \ln 2 \Longrightarrow x = \ln y - \ln 2$ is
	M0.
A1:	$f^{-1}(x) = \ln(x-2)$ or $y=\ln(x-2)$ or $y=\ln x-2 $ There must be some form of bracket.
B1ft:	Either $x > 2$, or follow through on their answer to part (a), provided that it wasn't $y \in \Re$
	Do not accept $y \ge 2$ or $f^{-1}(x) \ge 2$.
(e)	
B1:	Shape for $y=e^x$. The graph should only lie in quadrants 1 and 2. It should start out with a gradient that is approx. 0 above the <i>x</i> axis in quadrant 2 and increase in gradient as it moves into quadrant 1. You should not see a minimum point on the graph.
B1:	(0, 3) lies on the curve. Accept 3 written on the y axis as long as the point lies on the curve.
B1:	Shape for $y = \ln x$. The graph should only lie in quadrants 4 and 1. It should start out with gradient that is approx. infinite to the right of the <i>y</i> axis in quadrant 4 and decrease in gradient as it moves into quadrant 1. You should not see a maximum point. Also with hold this mark if it intersects $y=e^x$.
B1:	(3, 0) lies on the curve. Accept 3 written on the <i>x</i> axis as long as the point lies on the curve.

Question	n Scheme	Marks	
7(a)	$p = 4\pi^2 \text{ or } (2\pi)^2$	B1	
		(1)	
(b)	$x = (4y - \sin 2y)^2 \Longrightarrow \frac{\mathrm{d}x}{\mathrm{d}y} = 2(4y - \sin 2y) (4 - 2\cos 2y)$	M1 A1	
	Sub $y = \frac{\pi}{2} \Rightarrow \frac{dx}{dy} = 24\pi$ (= 75.4) OR $\Rightarrow \frac{dy}{dx} = \frac{1}{24\pi}$ (= 0.013)	M1	
	Equation of tangent $y - \frac{\pi}{2} = \frac{1}{24\pi} x - 4\pi^2$	M1	
	Using $y - \frac{\pi}{2} = \frac{1}{24\pi} x - 4\pi^2$ with $x = 0 \Rightarrow y = \frac{\pi}{3}$ cso	M1 A1	
		(6)	
	Alternative I for first two marks		
	$x = (4y - \sin 2y)^2 \Longrightarrow x^{0.5} = 4y - \sin 2y$		
	$\Rightarrow 0.5x^{-0.5} \frac{\mathrm{d}x}{\mathrm{d}y} = 4 - 2\cos 2y$	M1A1	
	Alternative II for first two marks		
	$x = \left(16y^2 - 8y\sin 2y + \sin^2 2y\right)$		
	$\Rightarrow 1 = 32y \frac{dy}{dx} - 8\sin 2y \frac{dy}{dx} - 16y \cos 2y \frac{dy}{dx} + 4\sin 2y \cos 2y \frac{dy}{dx}$	M1A1	
	Or $1dx = 32y dy - 8\sin 2y dy - 16y \cos 2y dy + 4\sin 2y \cos 2y dy$		
		(7 marks	
Notes:			
(a) B1: <i>p</i>	$p = 4\pi^2$ or exact equivalent $2\pi^2$. Also allow $x = 4\pi^2$		
	ses the chain rule of differentiation to get a form $l(4y - \sin 2y)(B \pm C \cos 2y), A, B, C \neq 0$ on the right hand side.		
	Alternatively attempts to expand and then differentiate using product rule and chain rule to		
a	a form $x = (16y^2 - 8y\sin 2y + \sin^2 2y) \Rightarrow \frac{dx}{dy} = Py \pm Q\sin 2y \pm Ry\cos 2y \pm S\sin 2y\cos 2y$ $P, Q, R, S \neq 0$		
	second method is to take the square root first. To score the method look for a ifferentiated expression of the form $Px^{-0.5}=4-Q\cos 2y$		
	third method is to multiply out and use implicit differentiation. Look for the correstorms, condoning errors on just the constants.	ect	

Question 7 notes *continued*

- A1: $\frac{dx}{dy} = 2(4y \sin 2y)(4 2\cos 2y) \text{ or } \frac{dy}{dx} = \frac{1}{2(4y \sin 2y)(4 2\cos 2y)} \text{ with both sides}$ correct. The lhs may be seen elsewhere if clearly linked to the rhs. In the alternative $\frac{dx}{dy} = 32y - 8\sin 2y - 16y\cos 2y + 4\sin 2y\cos 2y$ M1: Sub $y = \frac{\pi}{2}$ into their $\frac{dx}{dy}$ or inverted $\frac{dx}{dy}$. Evidence could be minimal, eg $y = \frac{\pi}{2} \Rightarrow \frac{dx}{dy} = ...$ It is not dependent upon the previous M1 but it must be a changed $x = (4y - \sin 2y)^2$ M1: Score for a correct method for finding the equation of the tangent at $\binom{1}{4\pi^2}, \frac{\pi}{2}$. Allow for $y - \frac{\pi}{2} = \frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}{y}}}}} x - \frac{1}{\frac{1}{\frac{1}{\frac{1}{y}}}} x - \frac{1}{\frac{1}{\frac{1}{\frac{1}{y}}}} x - \frac{1}{\frac{1}{\frac{1}{\frac{1}{y}}}} x - \frac{1}{\frac{1}{\frac{1}{y}}}$
 - Allow for $\left(y \frac{\pi}{2}\right) \times$ their numerical $\frac{dx}{dy} = x \text{their } 4\pi^2$

Even allow for
$$y - \frac{\pi}{2} = \frac{1}{\text{their numerical } \frac{dx}{dy}} x - p$$

It is possible to score this by stating the equation $y = \frac{1}{24\pi}x + c$ as long as $\left(\frac{4\pi^2}{2}, \frac{\pi}{2}\right)$ is used in a subsequent line.

M1: Score for writing their equation in the form
$$y = mx + c$$
 and stating the value of 'c'
or setting $x = 0$ in their $y - \frac{\pi}{2} = \frac{1}{24\pi} x - 4\pi^2$ and solving for y.

Alternatively using the gradient of the line segment AP = gradient of tangent.

Look for $\frac{\frac{\pi}{2} - y}{4\pi^2} = \frac{1}{24\pi} \Rightarrow y = ..$ Such a method scores the previous M mark as well.

At this stage all of the constants must be numerical. It is not dependent and it is possible to score this using the "incorrect" gradient.

A1: cso
$$y = \frac{\pi}{3}$$
. You do not have to see $\left(0, \frac{\pi}{3}\right)$

Questi	on Scheme	Marks
8(a)	$N = aT^b \Longrightarrow \log_{10} N = \log_{10} a + \log_{10} T^b$	M1
	$\Rightarrow \log_{10} N = \log_{10} a + b \log_{10} T \text{ so } m = b \text{ and } c = \log_{10} a$	A1
		(2)
(b)	Uses the graph to find either <i>a</i> or <i>b</i> $a = 10^{\text{intercept}}$ or $b = \text{gradient}$	M1
	Uses the graph to find both <i>a</i> and <i>b</i> $a = 10^{\text{intercept}}$ and $b = \text{gradient}$	M1
	Uses $T = 3$ in $N = aT^b$ with their a and b	M1
	Number of microbes ≈ 800	A1
		(4)
(c)	States that 'a' is the number of microbes 1 day after the start of the experiment.	B1
		(1)
Notes: (a) M1:		
(a) M1:	Takes $\log_{10}' s$ of both sides and attempts to use the addition law. Condone $\log = \log_{10} b$ his mark. Proceeds correctly to $\log_{10} N = \log_{10} a + b \log_{10} T$ and states $m = b$ and $c = \log_{10} a$	
(a) M1: A1: (b) M1:	Takes $\log_{10}'s$ of both sides and attempts to use the addition law. Condone $\log = \log_{10}$ his mark.	10 for
(a) M1: A1: (b) M1: M1:	Takes $\log_{10}'s$ of both sides and attempts to use the addition law. Condone $\log = \log_{10} h$ is mark. Proceeds correctly to $\log_{10} N = \log_{10} a + b \log_{10} T$ and states $m = b$ and $c = \log_{10} a$ Way One: Main scheme For attempting to use the graph to find either <i>a</i> or <i>b</i> using $a = 10^{\text{intercept}}$ or $b = \text{gradient}$ may be implied by $a = 10^{1.75to1.85}$ or $b = 2.27$ to 2.33 For attempting to use the graph to find BOTH <i>a</i> and <i>b</i> (See previous M1)	10 for
(a) M1: A1: (b) M1: M1: M1:	Takes $\log_{10}'s$ of both sides and attempts to use the addition law. Condone $\log = \log_{10} h$ is mark. Proceeds correctly to $\log_{10} N = \log_{10} a + b \log_{10} T$ and states $m = b$ and $c = \log_{10} a$ Way One: Main scheme For attempting to use the graph to find either <i>a</i> or <i>b</i> using $a = 10^{\text{intercept}}$ or $b = \text{gradient}$ may be implied by $a = 10^{1.75to1.85}$ or $b = 2.27$ to 2.33 For attempting to use the graph to find BOTH <i>a</i> and <i>b</i> (See previous M1) Uses $T = 3$ in $N = aT^b$ with their <i>a</i> and <i>b</i>	10 for
(a) M1: A1: (b) M1: M1: A1:	Takes \log_{10} 's of both sides and attempts to use the addition law. Condone $\log = \log_{10} h$ is mark. Proceeds correctly to $\log_{10} N = \log_{10} a + b \log_{10} T$ and states $m = b$ and $c = \log_{10} a$ Way One: Main scheme For attempting to use the graph to find either a or b using $a = 10^{\text{intercept}}$ or $b = \text{gradient}$ may be implied by $a = 10^{1.75 to 1.85}$ or $b = 2.27$ to 2.33 For attempting to use the graph to find BOTH a and b (See previous M1) Uses $T = 3$ in $N = aT^b$ with their a and b Number of microbes ≈ 800	10 for
(a) M1: A1: (b) M1: M1: A1:	Fakes $\log_{10}'s$ of both sides and attempts to use the addition law. Condone $\log = \log_{10} h$ is mark. Proceeds correctly to $\log_{10} N = \log_{10} a + b \log_{10} T$ and states $m = b$ and $c = \log_{10} a$ Way One: Main scheme For attempting to use the graph to find either <i>a</i> or <i>b</i> using $a = 10^{\text{intercept}}$ or $b = \text{gradient}$ may be implied by $a = 10^{1.75to1.85}$ or $b = 2.27$ to 2.33 For attempting to use the graph to find BOTH <i>a</i> and <i>b</i> (See previous M1) Uses $T = 3$ in $N = aT^b$ with their <i>a</i> and <i>b</i> Number of microbes ≈ 800 Way Two: Alternative using line of best fit techniques .	10 for
(a) M1: A1: (b) M1: M1: A1: M1:	Takes $\log_{10}'s$ of both sides and attempts to use the addition law. Condone $\log = \log_{10} h$ is mark. Proceeds correctly to $\log_{10} N = \log_{10} a + b \log_{10} T$ and states $m = b$ and $c = \log_{10} a$ Way One: Main scheme For attempting to use the graph to find either <i>a</i> or <i>b</i> using $a = 10^{\text{intercept}}$ or $b = \text{gradient}$ may be implied by $a = 10^{1.75to1.85}$ or $b = 2.27$ to 2.33 For attempting to use the graph to find BOTH <i>a</i> and <i>b</i> (See previous M1) Uses $T = 3$ in $N = aT^b$ with their <i>a</i> and <i>b</i> Number of microbes ≈ 800 Way Two: Alternative using line of best fit techniques . For $\log_{10} 3 \approx 0.48$ and using the graph to find $\log_{10} N$	10 for
(a) M1: A1: (b) M1: M1: A1: M1: M1: M1:	Fakes $\log_{10}'s$ of both sides and attempts to use the addition law. Condone $\log = \log_{10} h$ is mark. Proceeds correctly to $\log_{10} N = \log_{10} a + b \log_{10} T$ and states $m = b$ and $c = \log_{10} a$ Way One: Main scheme For attempting to use the graph to find either <i>a</i> or <i>b</i> using $a = 10^{\text{intercept}}$ or $b = \text{gradient}$ nay be implied by $a = 10^{1.75to1.85}$ or $b = 2.27$ to 2.33 For attempting to use the graph to find BOTH <i>a</i> and <i>b</i> (See previous M1) Uses $T = 3$ in $N = aT^b$ with their <i>a</i> and <i>b</i> Number of microbes ≈ 800 Way Two: Alternative using line of best fit techniques . For $\log_{10} 3 \approx 0.48$ and using the graph to find $\log_{10} N$ For using the graph to find $\log_{10} N$ (FYI $\log_{10} N \approx 2.9$)	10 for
 (a) M1: M1: (b) M1: M1: M1: M1: M1: M1: M1: 	Takes $\log_{10}'s$ of both sides and attempts to use the addition law. Condone $\log = \log_{10} h$ is mark. Proceeds correctly to $\log_{10} N = \log_{10} a + b \log_{10} T$ and states $m = b$ and $c = \log_{10} a$ Way One: Main scheme For attempting to use the graph to find either <i>a</i> or <i>b</i> using $a = 10^{\text{intercept}}$ or $b = \text{gradient}$ may be implied by $a = 10^{1.75to1.85}$ or $b = 2.27$ to 2.33 For attempting to use the graph to find BOTH <i>a</i> and <i>b</i> (See previous M1) Uses $T = 3$ in $N = aT^b$ with their <i>a</i> and <i>b</i> Number of microbes ≈ 800 Way Two: Alternative using line of best fit techniques . For $\log_{10} 3 \approx 0.48$ and using the graph to find $\log_{10} N$	

Questi	n Scheme	Marks		
9(a)	$\sec 2A + \tan 2A = \frac{1}{\cos 2A} + \frac{\sin 2A}{\cos 2A}$	B1		
	$=\frac{1+\sin 2A}{2}$	M1		
	cos2A			
	$=\frac{1+2\sin A\cos A}{\cos^2 A-\sin^2 A}$	M1		
	$=\frac{\cos^2 A + \sin^2 A + 2\sin A \cos A}{\cos^2 A - \sin^2 A}$			
	$\frac{1}{\cos^2 A - \sin^2 A}$			
	$=\frac{(\cos A + \sin A)(\cos A + \sin A)}{(\cos A + \sin A)}$	M1		
	$-\frac{1}{(\cos A + \sin A)(\cos A - \sin A)}$			
	$=\frac{\cos A + \sin A}{\sin A}$	A1*		
	$=\frac{1}{\cos A - \sin A}$			
		(5)		
(b)	$1 \cos\theta + \sin\theta = 1$			
(0)	$\sec 2\theta + \tan 2\theta = \frac{1}{2} \Rightarrow \frac{\cos \theta + \sin \theta}{\cos \theta - \sin \theta} = \frac{1}{2}$			
	$\Rightarrow 2\cos\theta + 2\sin\theta = \cos\theta - \sin\theta$			
	$\Rightarrow \tan \theta = -\frac{1}{2}$	M1 A1		
	$\Rightarrow \tan \theta = -\frac{1}{3}$			
	$\Rightarrow \theta = $ awrt 2.820, 5.961	dM1		
		A1		
		(4)		
		(9 marks		
Notes:				
(a)				
B1:	A correct identity for $\sec 2A = \frac{1}{\cos 2A}$ or $\tan 2A = \frac{\sin 2A}{\cos 2A}$.			
	It need not be in the proof and it could be implied by the sight of $\sec 2A = \frac{1}{\cos^2 A - \sin^2 A}$			
M1:	For setting their expression as a single fraction. The denominator must be con	rrect for their		
	fractions and at least two terms on the numerator.			
	This is usually scored for $\frac{1 + \cos 2A \tan 2A}{\cos 2A}$ or $\frac{1 + \sin 2A}{\cos 2A}$			
	For gotting on expression in just sin 4 and eas 4 by using the double angle id	lantitian		
	For getting an expression in just sin A and cos A by using the double angle id $\frac{1}{2}$ A $\frac{2}{2}$	lentities		
M1:	$\sin 2A = 2\sin A\cos A$ and $\cos 2A = \cos^2 A - \sin^2 A$, $2\cos^2 A - 1$ or $1 - 2\sin^2 A$.			
M1:	$\sin 2A = 2\sin A\cos A$ and $\cos 2A = \cos^2 A - \sin^2 A$, $2\cos^2 A - 1$ or $1 - 2\sin^2 A$. Alternatively for getting an expression in just $\sin A$ and $\cos A$ by using the dot			
M1:	$\sin 2A = 2\sin A \cos A \text{ and } \cos 2A = \cos^2 A - \sin^2 A, \ 2\cos^2 A - 1 \text{ or } 1 - 2\sin^2 A.$ Alternatively for getting an expression in just sin A and cos A by using the do dentities $\sin 2A = 2\sin A \cos A$ and $\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$ with $\tan A = \frac{\sin A}{\cos A}.$			
M1:	$\sin 2A = 2\sin A \cos A \text{ and } \cos 2A = \cos^2 A - \sin^2 A, \ 2\cos^2 A - 1 \text{ or } 1 - 2\sin^2 A.$ Alternatively for getting an expression in just sin A and cos A by using the do dentities $\sin 2A = 2\sin A \cos A$ and $\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$ with $\tan A = \frac{\sin A}{\cos A}.$			
M1:	$\sin 2A = 2\sin A\cos A$ and $\cos 2A = \cos^2 A - \sin^2 A$, $2\cos^2 A - 1$ or $1 - 2\sin^2 A$. Alternatively for getting an expression in just $\sin A$ and $\cos A$ by using the dot			

133

Question 9 notes continued

- M1: In the main scheme it is for replacing 1 by $\cos^2 A + \sin^2 A$ and factorising both numerator and denominator.
- A1*: Cancelling to produce given answer with no errors. Allow a consistent use of another variable such as θ , but mixing up variables will lose the A1*.

(b)

M1: For using part (a), cross multiplying, dividing by $\cos \theta$ to reach $\tan \theta = k$ Condone $\tan 2\theta = k$ for this mark only.

A1:
$$\tan \theta = -\frac{1}{3}$$

- **dM1:** Scored for $\tan \theta = k$ leading to at least one value (with 1 dp accuracy) for θ between 0 and 2π . You may have to use a calculator to check. Allow answers in degrees for this mark.
- A1: $\theta = \text{awrt } 2.820, 5.961 \text{ with no extra solutions within the range. Condone } 2.82 \text{ for } 2.820.$
- You may condone different/ mixed variables in part (b)

Questio	n Scheme	Marks	
10(a)	Subs $D = 15$ and $t = 4$ $x = 15e^{-0.2 \times 4} = 6.740$ (mg)	M1 A1	
		(2)	
(b)		M1	
	$15e^{-0.2\times7} + 15e^{-0.2\times2} = 13.754 \text{ (mg)}$	A1*	
		(2)	
(c)	$15e^{-0.2 \times T} + 15e^{-0.2 \times (T+5)} = 7.5$	M1	
	$15e^{-0.2 \times T} + 15e^{-0.2 \times T}e^{-1} = 7.5$		
	$15e^{-0.2\times T} (1+e^{-1}) = 7.5 \Longrightarrow e^{-0.2\times T} = \frac{7.5}{15(1+e^{-1})}$	dM1	
	$T = -5\ln\left(\frac{7.5}{15(1+e^{-1})}\right) = 5\ln\left(2+\frac{2}{e}\right)$	A1 A1	
		(4)	
	·	(8 marks)	
A1: (b) M1:	$15e^{-0.8}$, $15e^{-0.2\times4}$ or awrt 6.7. Condone slips on the power. Eg you may see - Cao. 6.740 (mg) Note that 6.74 (mg) is A0 Attempt to find the sum of two expressions with $D = 15$ in both terms with t and 7. Evidence would be $15e^{-0.2\times7} + 15e^{-0.2\times2}$ or similar expressions such as $(15e^{-1} + 15)e^{-0.2\times2}$. Award for the sight of the two numbers awrt 3.70 and a	values of 2	
	followed by their total awrt 13.75. Alternatively finds the amount after 5 hou $15e^{-1} = awrt 5.52$ adds the second dose = 15 to get a total of awrt 20.52 then by $e^{-0.4}$ to get awrt 13.75. Sight of $5.52+15=20.52 \rightarrow 13.75$ is fine.	ırs,	
A1*:	Cso so both the expression $15e^{-0.2\times7} + 15e^{-0.2\times2}$ and $13.754(mg)$ are required		
	Alternatively both the expression $(15e^{-0.2\times5}+15)\times e^{-0.2\times2}$ and 13.754 (<i>mg</i>) are required.		
	Sight of just the numbers is not enough for the A1*		
(c) M1:	Attempts to write down a correct equation involving <i>T</i> or <i>t</i> . Accept with or without correct bracketing Eg. accept $15e^{-0.2 \times T} + 15e^{-0.2 \times (T \pm 5)} = 7.5$ or similar equations $(15e^{-1} + 15)e^{-0.2 \times T} = 7.5$		
dM1:	Attempts to solve their equation, dependent upon the previous mark, by proce $e^{-0.2 \times T} =$ An attempt should involve an attempt at the index law $x^{m+n} = x^m + 1$ taking out a factor of $e^{-0.2 \times T}$ Also score for candidates who make $e^{+0.2 \times T}$ the the same criteria.	$\times x^n$ and	

135

Question 10 notes continued Any correct form of the answer, for example, $-5\ln\left(\frac{7.5}{15(1+e^{-1})}\right)$ A1: Cso. $T = 5 \ln \left(2 + \frac{2}{e}\right)$ Condone *t* appearing for *T* throughout this question. A1: (c) **Alternative 1** 1st Mark (Method): $15e^{-0.2 \times T} + a \text{wrt } 5.52e^{-0.2 \times T} = 7.5 \implies e^{-0.2 \times T} = a \text{wrt } 0.37$ 2nd Mark (Accuracy): T=-5ln (awrt 0.37) or awrt 5.03 or T=-5ln $\left(\frac{7.5}{\text{awrt } 20.52}\right)$ Alternative 2 1st Mark (Method): $13.754e^{-0.2 \times T} = 7.5 \Rightarrow T = -5 \ln\left(\frac{7.5}{13.754}\right)$ or equivalent such as 3.03 2nd Mark (Accuracy): 3.03 + 2 = 5.03 Allow $-5 \ln \left(\frac{7.5}{13.754} \right) + 2$ Alternative 3 (by trial and improvement) 1st Mark (Method): $15e^{-0.2\times5} + 15e^{-0.2\times10} = 7.55$ or $15e^{-0.2\times5.1} + 15e^{-0.2\times10.1} = 7.40$ or any value between. 2nd Mark (Accuracy): Answer T = 5.03.